A regional model for estimating the aboveground carbon density of Borneo's tropical forests from airborne laser scanning

نویسندگان

  • Tommaso Jucker
  • Gregory P. Asner
  • Michele Dalponte
  • Philip Brodrick
  • Christopher D. Philipson
  • Nick Vaughn
  • Craig Brelsford
  • David F.R.P. Burslem
  • Nicholas J. Deere
  • Robert M. Ewers
  • Jakub Kvasnica
  • Simon L. Lewis
  • Yadvinder Malhi
  • Sol Milne
  • Reuben Nilus
  • Marion Pfeifer
  • Oliver Phillips
  • Lan Qie
  • Nathan Renneboog
  • Glen Reynolds
  • Terhi Riutta
  • Matthew J. Struebig
  • Martin Sv'atek
  • Yit Arn Teh
  • Edgar C. Turner
  • David A. Coomes
چکیده

Tommaso Jucker, Gregory P. Asner, Michele Dalponte, Philip Brodrick, Christopher D. Philipson, Nick Vaughn, Craig Brelsford, David F.R.P. Burslem, Nicholas J. Deere, Robert M. Ewers, Jakub Kvasnica, Simon L. Lewis, Yadvinder Malhi, Sol Milne, Reuben Nilus, Marion Pfeifer, Oliver Phillips, Lan Qie, Nathan Renneboog, Glen Reynolds, Terhi Riutta, Matthew J. Struebig, Martin Svátek, Yit Arn Teh, Edgar C. Turner and David A. Coomes

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

BACKGROUND Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography prese...

متن کامل

Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR

Mapping aboveground carbon density in tropical forests can support CO2 emission monitoring and provide benefits for national resource management. Although LiDAR technology has been shown to be useful for assessing carbon density patterns, the accuracy and generality of calibrations of LiDAR-based aboveground carbon density (ACD) predictions with those obtained from field inventory techniques sh...

متن کامل

Modeling Aboveground Biomass in Dense Tropical Submontane Rainforest Using Airborne Laser Scanner Data

Successful implementation of projects under the REDD+ mechanism, securing payment for storing forest carbon as an ecosystem service, requires quantification of biomass. Airborne laser scanning (ALS) is a relevant technology to enhance estimates of biomass in tropical forests. We present the analysis and results of modeling aboveground biomass (AGB) in a Tanzanian rainforest utilizing data from ...

متن کامل

Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania

BACKGROUND Airborne laser scanning (ALS) has recently emerged as a promising tool to acquire auxiliary information for improving aboveground biomass (AGB) estimation in sample-based forest inventories. Under design-based and model-assisted inferential frameworks, the estimation relies on a model that relates the auxiliary ALS metrics to AGB estimated on ground plots. The size of the field plots...

متن کامل

Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data

Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017